An in vitro human muscle preparation suitable for metabolic studies. Decreased insulin stimulation of glucose transport in muscle from morbidly obese and diabetic subjects.
نویسندگان
چکیده
We have developed an in vitro muscle preparation suitable for metabolic studies with human muscle tissue and have investigated the effects of obesity and non-insulin-dependent diabetes mellitus (NIDDM) on glucose transport. Transport of 3-O-methylglucose and 2-deoxyglucose was stimulated approximately twofold by insulin in muscle from normal nonobese subjects and stimulation occurred in the normal physiological range of insulin concentrations. In contrast to insulin stimulation of 3-O-methylglucose and 2-deoxyglucose transport in muscle from normal, nonobese subjects, tissue from morbidly obese subjects, with or without NIDDM, were not responsive to insulin. Maximal 3-O-methylglucose transport was lower in muscle of obese than nonobese subjects. Morbidly obese patients, with or without NIDDM, have a severe state of insulin resistance in glucose transport. The novel in vitro human skeletal muscle preparation herein described should be useful in investigating the mechanism of this insulin resistance.
منابع مشابه
The action of GLP-1 and exendins upon glucose transport in normal human adipocytes, and on kinase activity as compared to morbidly obese patients.
A role of GLP-1 (glucagon-like peptide-1) in the recovery of the metabolic conditions of morbidly obese patients after bariatric surgery has been proposed. Exendin 4 (Ex-4) and exendin 9 (Ex-9) both have GLP-1-like effects upon glucose metabolism in human myocytes. We investigated in normal human adipocytes the effect of GLP-1, Ex-4 and Ex-9, compared with insulin upon the activity of PI3K, PKB...
متن کاملpatient-oriented research Metabolic flexibility is conserved in diabetic myotubes
The purpose of this study was to test the hypothesis that metabolic inflexibility is an intrinsic defect. Glucose and lipid oxidation were studied in human myotubes established from healthy lean and obese subjects and patients with type 2 diabetes (T2D). In lean myotubes, glucose oxidation is raised by increasing glucose concentrations (0– 20 mmol/l) and acute insulin stimulation (P, 0.05), whe...
متن کاملUnderstanding the Mechanism Underlie the Antidiabetic Activity of Oleuropein Using Ex-Vivo Approach
Background: Oleuropein, the main constituent of olive fruit and leaves, has been reported to protect against insulin resistance and diabetes. While many experimental investigations have examined the mechanisms by which oleuropein improves insulin resistance and diabetes, much of these investigations have been carried out in either muscle cell lines or in vivo models two scenarios with many draw...
متن کاملEffect of Lipopolysaccharide on Inflammation and Insulin Action in Human Muscle
Accumulating evidence from animal studies suggest that chronic elevation of circulating intestinal-generated lipopolysaccharide (LPS) (i.e., metabolic endotoxemia) could play a role in the pathogenesis of insulin resistance. However, the effect of LPS in human muscle is unclear. Moreover, it is unknown whether blockade/down regulation of toll-like receptor (TLR)4 can prevent the effect of LPS o...
متن کاملIncreased malonyl-CoA levels in muscle from obese and type 2 diabetic subjects lead to decreased fatty acid oxidation and increased lipogenesis; thiazolidinedione treatment reverses these defects.
Increased accumulation of fatty acids and their derivatives can impair insulin-stimulated glucose disposal by skeletal muscle. To characterize the nature of the defects in lipid metabolism and to evaluate the effects of thiazolidinedione treatment, we analyzed the levels of triacylglycerol, long-chain fatty acyl-coA, malonyl-CoA, fatty acid oxidation, AMP-activated protein kinase (AMPK), acetyl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 82 2 شماره
صفحات -
تاریخ انتشار 1988